Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species.

نویسندگان

  • Sameh Amamou
  • Cecilia Sambusiti
  • Florian Monlau
  • Eric Dubreucq
  • Abdellatif Barakat
چکیده

The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase) and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM). By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively). Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively). The best bioethanol yield (6 geth/100 g TS) was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production

Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...

متن کامل

Enzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol

Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed.  The hydrolysis process involves two stages: in the first stage, the O...

متن کامل

Recent Status on Enzymatic Saccharification of Lignocellulosic Biomass for Bioethanol Production

During the past decades, bioethanol becomes the best alternative to fossil fuels. Ethanol production by using edible feedstocks like sugarcane and grains became a point of concern in terms of the food supply and demand. Lignocellulosic biomass comprises non-edible feedstock opened a new method for the second-generation bioethanol production. Bioethanol production from lignocellulosic biomass is...

متن کامل

BIOETHANOL PRODUCTION FROM CELLULOSE IN RED ALGAE Gracilaria verrucosa BY SEPARATED HYDROLYSIS AND FERMENTATION SYSTEM USING Trichoderma viride AND Zymomonas mobilis

In this study, renewable marine cellulose from red algae Gracilaria verrucosa was utilized for the production of bioethanol. Bioethanol from the red alga cellulose was produced by the enzymatic hydrolysis and fermentation methods and the conversion value of the cellulose in Gracilaria verrucosa was estimated. Trichoderma viride fungus and Zymomonas mobilis bacterium were used for enzymatic hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2018